If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-685X-4500=0
a = 1; b = -685; c = -4500;
Δ = b2-4ac
Δ = -6852-4·1·(-4500)
Δ = 487225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{487225}=\sqrt{25*19489}=\sqrt{25}*\sqrt{19489}=5\sqrt{19489}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-685)-5\sqrt{19489}}{2*1}=\frac{685-5\sqrt{19489}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-685)+5\sqrt{19489}}{2*1}=\frac{685+5\sqrt{19489}}{2} $
| 1/4(x+4)+4=2/4x+1 | | 6(7+x)=43-2x | | 15+4x=31 | | 5m+2=4m1 | | 8-6a+a^2=0 | | 5x-31=109 | | -t=-22 | | 12+54-(x)=0 | | 7=t/2-3 | | 5+42=x | | -13=-1+3t | | 5z-59=116 | | 6y-74=106 | | 12+54=x | | 6y-106=88 | | 6y-88=106 | | 66+12=y | | 3x+2(5x-6)=5 | | (4x-1)^2=0 | | 140+40=x | | -1/10h=13 | | 7-x/12=12 | | 6−x/11=7 | | 5-x/9=-9 | | 2x^2+3=x^2-7 | | -1/25h=18 | | F(-1)=3x+5 | | x/2-2=2x^2+x-3 | | 10g=-14 | | (3a-2)/3+(2a+3)/2=a+7/6 | | 2x+56=14 | | 5x-(9-x)+4x+9=10x+5 |